Copied to
clipboard

G = C33.(C3×S3)  order 486 = 2·35

8th non-split extension by C33 of C3×S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C32⋊C9.3S3, C32⋊C9.3C6, C33.8(C3×S3), C322D9.2C3, C32.29He32C2, C32.32(C32⋊C6), C3.2(He3.C6), C3.7(He3.2S3), SmallGroup(486,11)

Series: Derived Chief Lower central Upper central

C1C3C32⋊C9 — C33.(C3×S3)
C1C3C32C33C32⋊C9C32.29He3 — C33.(C3×S3)
C32⋊C9 — C33.(C3×S3)
C1C3

Generators and relations for C33.(C3×S3)
 G = < a,b,c,d,e,f | a3=b3=c3=f2=1, d3=c-1, e3=fbf=b-1, dad-1=ab=ba, eae-1=ac=ca, faf=a-1c-1, bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, ede-1=a-1c-1d, df=fd, fef=be2 >

27C2
2C3
9C3
9S3
27S3
27C6
3C32
3C32
6C32
9C9
9C9
18C9
3C3⋊S3
9D9
9C3×S3
27C3×S3
27C18
3C3×C9
3C3×C9
6C3×C9
3C3×C3⋊S3
9S3×C9
9C3×D9
2C32⋊C9
3C32⋊C18

Smallest permutation representation of C33.(C3×S3)
On 54 points
Generators in S54
(2 5 8)(3 9 6)(10 13 16)(12 18 15)(19 25 22)(20 23 26)(29 32 35)(30 36 33)(37 43 40)(39 42 45)(47 53 50)(48 51 54)
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 52 49)(47 53 50)(48 54 51)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 33 45 7 30 42 4 36 39)(2 31 37 8 28 43 5 34 40)(3 32 44 9 29 41 6 35 38)(10 52 19 13 46 22 16 49 25)(11 53 26 14 47 20 17 50 23)(12 51 27 15 54 21 18 48 24)
(1 48)(2 49)(3 50)(4 51)(5 52)(6 53)(7 54)(8 46)(9 47)(10 34)(11 35)(12 36)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 43)(20 44)(21 45)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)

G:=sub<Sym(54)| (2,5,8)(3,9,6)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(29,32,35)(30,36,33)(37,43,40)(39,42,45)(47,53,50)(48,51,54), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,33,45,7,30,42,4,36,39)(2,31,37,8,28,43,5,34,40)(3,32,44,9,29,41,6,35,38)(10,52,19,13,46,22,16,49,25)(11,53,26,14,47,20,17,50,23)(12,51,27,15,54,21,18,48,24), (1,48)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,46)(9,47)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)>;

G:=Group( (2,5,8)(3,9,6)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(29,32,35)(30,36,33)(37,43,40)(39,42,45)(47,53,50)(48,51,54), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,33,45,7,30,42,4,36,39)(2,31,37,8,28,43,5,34,40)(3,32,44,9,29,41,6,35,38)(10,52,19,13,46,22,16,49,25)(11,53,26,14,47,20,17,50,23)(12,51,27,15,54,21,18,48,24), (1,48)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,46)(9,47)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42) );

G=PermutationGroup([[(2,5,8),(3,9,6),(10,13,16),(12,18,15),(19,25,22),(20,23,26),(29,32,35),(30,36,33),(37,43,40),(39,42,45),(47,53,50),(48,51,54)], [(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,52,49),(47,53,50),(48,54,51)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,33,45,7,30,42,4,36,39),(2,31,37,8,28,43,5,34,40),(3,32,44,9,29,41,6,35,38),(10,52,19,13,46,22,16,49,25),(11,53,26,14,47,20,17,50,23),(12,51,27,15,54,21,18,48,24)], [(1,48),(2,49),(3,50),(4,51),(5,52),(6,53),(7,54),(8,46),(9,47),(10,34),(11,35),(12,36),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,43),(20,44),(21,45),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42)]])

31 conjugacy classes

class 1  2 3A3B3C3D3E3F6A6B9A···9F9G···9O18A···18F
order12333333669···99···918···18
size127112221827279···918···1827···27

31 irreducible representations

dim1111223666
type+++++
imageC1C2C3C6S3C3×S3He3.C6C32⋊C6He3.2S3C33.(C3×S3)
kernelC33.(C3×S3)C32.29He3C322D9C32⋊C9C32⋊C9C33C3C32C3C1
# reps11221212136

Matrix representation of C33.(C3×S3) in GL6(𝔽19)

100000
8110000
107000
11001100
000010
1800007
,
1100000
0110000
0011000
700700
700070
700007
,
700000
070000
007000
000700
000070
000007
,
9016000
15010000
15410000
009009
409400
409040
,
1190000
0811000
1180000
8110001
7110700
7110070
,
1800600
0001810
0001801
000100
010100
001100

G:=sub<GL(6,GF(19))| [1,8,1,11,0,18,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,7],[11,0,0,7,7,7,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[9,15,15,0,4,4,0,0,4,0,0,0,16,10,10,9,9,9,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,9,0,0],[11,0,11,8,7,7,9,8,8,11,11,11,0,11,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,1,0,0],[18,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,6,18,18,1,1,1,0,1,0,0,0,0,0,0,1,0,0,0] >;

C33.(C3×S3) in GAP, Magma, Sage, TeX

C_3^3.(C_3\times S_3)
% in TeX

G:=Group("C3^3.(C3xS3)");
// GroupNames label

G:=SmallGroup(486,11);
// by ID

G=gap.SmallGroup(486,11);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,1190,224,338,8643,873,1383,3244]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=f^2=1,d^3=c^-1,e^3=f*b*f=b^-1,d*a*d^-1=a*b=b*a,e*a*e^-1=a*c=c*a,f*a*f=a^-1*c^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=a^-1*c^-1*d,d*f=f*d,f*e*f=b*e^2>;
// generators/relations

Export

Subgroup lattice of C33.(C3×S3) in TeX

׿
×
𝔽